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Abstract We describe a close connection between the localized induction equation hierarchy of 
integrable evolution equations on space curves and surfaces of constant negative Gauss c w m .  

1. Introduction 

Many of the integrable equations of nonlinear science have essentially equivalent realizations 
in terms of the classical geometry of curves and surfaces in space. These geometric 
realizations provide new insight into the shxcture of the integrable equations; in addition, 
these geomehic problems may well have interesting physical interpretations in their own 
right. In this paper, we describe recent developments illustrating a close connection between 
two such geometric realizations: the localized induction equation (LE) and pseudospherical 
surfaces or surfaces of constant negative Gauss curvature. 

1.1. Localized induction equation 

LIE is a local geometric evolution equation defined on space curves via the equation 

yr = Ys x yrs 

where s is the arclength parameter for the evolving space curve y(s, t) E R3,  and x denotes 
cross product. When the curvature is non-vanishing, the right-hand side can be written KB, 
where B is the binormal to y ,  and K is the curvature. LIE was developed in fluid mechanics 
as an idealized local model for the evolution of the centreline of a thin, isolated vortex 
tube in an inviscid fluid (for derivation and history, see 11-31; for a discussion of more 
accurate, non-local models, see [4, SI). As in the case of the full inviscid Euler equations 
from which it is derived, LIE can be described as a Hamiltonian evolution equation and, in 
fact, the corresponding Hamiltonian is just the length functional on space curves [6] .  The 
connection of LIE to soliton theory was made apparent through a discovery of Hasimoto 
[7]: if y evolves according to LIE, then the induced evolution of its complex curvatwe 
@ = K exp[i f T(U) du] (5 is the torsion along the curve) is given by the cubic nonlinear 
Schriidinger equation (NLS) @, = i(@ss + f l @ I * @ ) .  NLS is a well known example of a 
completely integrable evolution equation; Hasimoto’s result implies that L E  is a geometric 
realization for NLS. Further investigations of the LIE-NLS correspondence were reported in 
[8,9] and details of the complete integrability of LIE itself are also described there. We 
remark that the connection between ms-type equations and the equations of fluid motion 
remains a topic of current research [lo]. 
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1.2. Pseudospherical surfaces 

The study of pseudospherical surfaces in Euclidean space spans a period of more than a 
century: in particular, we mention the early works of Dobriner [ l l ] ,  Enneper [IZ]. and 
Backlund [13]. Recent interest has been spurred by the connection with soliton theory 
[ 14,151 (a kindred problem, finding metrics on R2 with constant curvature, is also related 
to integrable evolution equations: see [16,17]). We mention two such connections: 

(i) Given a pseudospherical surface M, the angle $ between its asymptotic curves 
satisfies the sine-Gordon equation (SG) a2$/axy = sin($), where x and y are asymptotic 
coordinates for the surface (for basic definitions from surface theory, see [NI). Again, sc 
is a well known example of a completely integrable equation, which arises in numerous 
physical problems [19-211. Thus, a pseudospherical surface M is a geometric realization 
of a given solution to SG. 

(ii) Given a pseudospherical surface M, its second fundamental form induces a Lorentz 
metric on the surface. The Gauss map of A4 (taking M to the two sphere S2) is a harmonic 
map [14,15]. This is an example of a classical chiral model, for which there exists an 
extensive literature (122-251 and references therein). 

We now make a simple observation which demonstrates that L E  has some connection 
with surface theory. Consider any curve y = y(s ,  0 )  and let it evolve according to LE.  
Because N is normal to the resulting swept-out surface, it follows that y ( s ,  t )  is a geodesic 
for any time t ,  thus providing a geodesic foliation of the resulting surface. 

To describe the connection with pseudospherical surfaces, we make reference to the 
complete integrability properties of LE. LIE is the first (non-trivial) term of an infinite 
sequence of commuting Hamiltonian evolution equations on curves, all of which equations 
are local-geometric in nature; we call this sequence the localized induction hierarchy (Lm). 
The associated Hamiltonians (which are conserved quantities for LIE) can be expressed 
as global geomekic invariants of the curves. We shall see that certain distinguished 
soliton curves (= critical points for linear combinations of the Hamiltonians), after evolving 
according to a related linear combination of evolution equations from LIH, sweep out 
pseudospherical surfaces. In analogy with the geodesic construction of the previous 
paragraph, the induced foliation plays a role in the geometry of the surface: the curves of the 
foliation are asymptotic lines for the surface. The main point of this paper is to describe this 
construction. We also find an interesting connection between pseudospherical surfaces and 
Blcklund transformations for certain curves; see section 4. In this same section, there is a 
surprising technical result suggesting deeper relations with Lie groups: two natural bases for 
a geometrically defined vector splice, relevant to our theory, are related via a changeof-basis 
matrix defined in terms of lower triangular Toeplitz matrices. In the last section we discuss a 
related topic: evolution equations on surfaces which preserve the pseudosphericity property. 
For brevity, proofs have been omitted, but sufficient computational detail is presented so 
that the reader can at least reconstruct the basic examples described here. 

One way of viewing our technique is as a ‘nonlinear factorization’ of the problem 
of constructing pseudospherical surfaces: the simpler ‘factors’ are the related variational 
problem on curves, and then the subsequent evolution of critical points of this variational 
problem according to appropriate. evolution equations. Historically, we know that solution 
techniques for integrable systems ‘travel well’: if applicable to one integrable example, they 
can usually be modified to apply to essentially all other known integrable problems. Thus, 
this study of the Lm-pseudospherical connection will hopefully have consequences for the 
study of integrable models of more direct interest to mathematical physics. 
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2. LIB and related hierarchies 

As stated above, LIE belongs to an infinite hierarchy of evolution equations on curves, all 
of the form y, = X .  = aT + bN + cB,  where ( T ,  N, B ]  is the Frsnet frame along the 
curve, and a ,  b,  c are functions (polynomial) of K ,  5, K' = K , ~ ,  r' = q7, and higher derivatives 
with respect to s. We list the first few terms of the hierarchy, as well as their associated 
Hamiltonians (the vector field XO is exceptional): 

Xo = -T 

The vector fields of Lm are locally arclength preserving (LAP): a vector field W is LAP 
if every segment of a curve y has its length remain constant as y evolves via yt = W. 
Equivalently, (Ws, T )  = 0. 

The first few functionals in the list have simple physical interpretations. As shown in 
[26], the critical points of linear combinations of the functionals I,, I?, I3 are the Kirchhoff 
rods of elasticity theory. Interestingly, these are exactly the curves for which the shape 
remains unchanged as they evolve according to L E  ([9,27,28]). Another discussion of the 
physical interpretation of the invariants of LIE can be found in [29]. 

As is usually the case with integrable systems, Lm is generated by a recursion operator 
X.+1 = E X , ,  n > 0; if X = aT + bN + cB then R ( X )  = -P(T  x X') ,  where P is 
a parameterization operator P ( X )  = jS(Kb) dsT 4- bN + cB. Besides being useful for 
generating Lni, R can be used to compactly express the first-order variations in curvature 
and torsion along any vector field W which is LAP [9]: 

W ( K )  = (-R2(W), N) W ( r )  = (-R'(W), B / K ) ' .  

Related formulae also exist for the evolution of frame fields along W [30]. 
There are a number of hierarchies of integrable geometric evolution equations, related 

to LIE, which have interesting geometric properties. These are discussed in more detail in 
[31]; we mention those which are relevant here: 

(i) Constant torsion preserving (CTP): For n > 0, the vector fields 

preserve the constant torsion condition t = to. If a constant torsion curve y evolves 
according to yt = Z,, the induced evolution on curvature K( = Z # ( K )  is the corresponding 
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element of the (mKdV) hierarchy; in particular, ZI induces the ( m d v )  evolution K~ = 
K , ? , ~ ~  + ~ K ’ K . ,  recovering a result of Lamb [32]. Recently, Fukumoto and Miyazaki [33] 
have derived a refined version of LIE which allows for an axial velocity for the vortex tube: 
modulo trivial scaling terms, their equation is exactly y, = ZI . 

= 0, 
the sequence Z. just reduces to the even Xh reshicted to planar curves. This integrable 
hierarchy of evolution equations has been discussed by several authors [34-361. The first 
term of the hierarchy can be interpreted physically: in [37], it is shown that y, = Z1, 
when reshicted to planar curves, is a ‘localized induction equation’ for boundary curves of 
vortex patches for two-dimensional ideal fluid flow. The even functionals Zk for LEI vanish 
identically on planar curves, and the odd functionals Z ~ + I  are restricted to give functionals 
on planar curves which depend only on K and its derivatives. 

(iii) Torsion independent: The vector fields A0 = -T,  

(ii) Planarpreserving: A special case of (i) in section 1.2 is worth noting: when 

have the property that, along curves y with t = to, the coefficients of A, = aT + bN + cE 
have no explicit t dependence. The odd vector fields in the sequence are purely binormal; 
the even vector fields, on the other hand, have a zero binormal component. We thus refer 
to the even fields as ‘planar-like’ and introduce the notation a,, =A%.  

3. Pseudospherical surfaces and the ‘trigonometric equation’ 

We briefly review the basic facts from surface theory in R3,  mostly to establish notation 
and terminology. Given an oriented surface M, the Gauss map U : M -+ S2 sends a 
point p E M to its unit normal. By identifying tangent spaces TpM and Tv~ppYz, one 
obtains the Weingarten map -du : T,M -+ TpM.  The secondfundamental form is given 
by n ( w )  = (-du(w), (U))). for any w E T p M .  The determinant of the Weingarten map is 
the Gauss curvature of M .  If the Gauss curvature is negative, then at any point p there 
will be two linearly independent vectors vi ,  i = 1 ,2  such that n(u,) = 0 these are the 
asymptotic directions of the surface. Any curve whose tangent at every point corresponds to 
an asymptotic direction is called an asymprotic curve or line. If M is pseudospherical, then 
M has two transverse foliations by asymptotic lines. A theorem by Beltrami-Enneper [38] 
states that the Gauss curvature of a surface M along an asymptotic line y is the negative 
of the square of the torsion T of y ;  if M is pseudospherical, then its asymptotic lines have 
constant torsion. 

Conversely, given a curve y with constant torsion so, there is a dynamical prescription 
for finding a pseudospherical surface M with y as an asymptotic line: 

Proposiiion. Let y = y(s ,O)  be the initial condition for the ‘trigonometric equation’ 
yl = W = cos(e)T - sin(@)N, where e = pK(u)du .  The resulting swept-out surface M 
is pseudospherical with curvature G = -to”. For any r ,  y(s,  t )  is an asymptotic curve for 
M. The induced evolution of 6 is given by the sineGordon equation 6, = -Gsin(@). 

For a discussion and proof, see [31,39]. 
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4. Planar-like solitons and pseudospherical surfaces 

4.1. Planar and planar-like solitons 

As stated above, the odd functionals for LIE are restricted to planar curves. Let J. denote 
the restriction of I,+, to planar curves; such functionals depend upon curvature only. A 
planar soliton is a planar curve which is a critical point for a linear combination of the 
J,,. For example, critical points for J1 + aJo = 1 ('K' +a)ds have curvature functions 
satisfying the Euler-Lagrange equation 

Y 2  

K" -t 1.' - U K  = 0. 

51 represents the elastic energy for a curve, JO a length constraint; the associated critical 
points are called planar elastic curves or elastica. 

For simplicity, we specify boundary conditions for asymptotic linean'ty on our curves 
by assuming that K and its derivatives vanish as s + +CO. For each Jn, we denote its 
associated Euler operator by Ea; the first three are 

E&) = - K ( S )  

5 K ( S ) d K ( S ) '  5 K(s)'dZK(s) 3 - _  - - K ( S ) 5 .  
d4 
ds4 2 ds 2 ds2 8 

& ( I C )  = - - K ( S )  - - 

A plonar-like soliton is a space curve y with constant torsion t = to and for which 
the curvature K is the same as that of a planar soliton. Thus, C;=oai&(~) = 0 for some 
choice of constants a,. This shows that planar-like solitons are related to the critical pain& 
of the geometric functionals associated with LIE; the next proposition states that they are 
critical points for appropriate functionals: 

Pmposition. Let a space curve y be a planar-like soliton with torsion to and curvature 
satisfying 

k a i E i ( K )  =o. 
I =O 

Then y is a critical point of the functional 

Equivalently, the vector field 

they have constant torsion, which will not be true in general. 

4.2. s-integrals 

The Ei previously mentioned can be used to consmct the mKdv hierarchy of integrable 
evolution equations via K~ = dEi(K)/ds, i 0. It is a part of the general theory of 
these equations 1401 that the Euler operators E ( K )  = x y = o ~ i E i ( ~ )  are associated with 
the s-integrals I;@), where E(K)dEj(K)/ds = dT,(~)/ds ,  j = 0, 1, ... ,n - 1. The I; 
are polynomial expressions in K and its derivatives. Along a planar-like soliton, we have 
E ( K )  = 0, so T, = cj. In fact, for asymptotically linear curves, the cj are all 0. 

a, Azi+l vanishes along y .  

In the last proposition, the planar-like solitons are distinguished critical points in that 
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4.3. De$nition and properties of T* 
For the rest of this section, y will refer to a planar-like n-soliton with torsion ro # 0 
and curvature K satisfying E ( K )  = Cy=oairo-ZnE,(K) = 0 with a0 # 0, a, # 0; we set 
bi = airo-". We define a planar-like vector field along y (no binormal component) 

We describe the properties of the evolution equation y, = T* with our planar-like soliton y 
as its initial condition-we call the reader's attention in particular to articles (iv) and (vii): 

(i) T' is CTP along y .  To see this, one proves the identity 

thus expressing T* in terms of the c'r~ vector fields Z,,. The variation in curvature associated 
with the evolution yt = T* is given by 

a combination of terms in the mKdV hierarchy. 
(ii) T* preserves soliton Qpe.  As indicated above, y is a critical point for a linear 

combination of conserved functionals for the LIE hierarchy, distinguished by having constant 
torsion. Since T* itself is a linear combination of terms t?om LIE, it deforms y into another 
critical point; (i) shows that the deformation preserves constant torsion. 

(iu) T* is of unit length along y .  This is a direct consequence of E ( K )  = 0. 
(iv) Geometry ofrhe swept-out surface: Let M be the surface swept out via the evolution 

y, = T*. For any time t, T* is a linear combination of the F r h t  vectors T and N; 
hence the normal U to the surface M is B,  the binormal to the curve y. We compute 
n(T) = (-du(T), T )  = ( - V r B ,  T) = ( rN ,  T) = 0; T is an asymptotic direction for M. 
By the Beltrami-Enneper theorem, M is a pseudospherical sutface with Gauss curvature 
G = -TO'. We will call a pseudospherical surface M a soliton surface if its asymptotic 
curves consist of planar-like solitons. 

(v) T* as an asymptotic direction. To show that T' is another asymptotic direction 
for M, one needs to compute n ( T * )  = (-du(T*), T') = ( - V p B ,  T"). The term VT.B 
requires the variation formulae for frames derived in [30] which were mentioned above; the 
result is that T' is indeed an asymptotic direction. We call T' the conjugate asymptotic 
direction and its integral curve y*  the conjugate asymptotic curve. By (iii), T* is the unit 
tangent vector along y'. Since M is pseudospherical, i t  must be the case that the torsion 
of y* is fro; a calculation shows it to be so. 

(vi) K' in terms of K .  At a point p on M, the conjugate curvature of y*  can be expressed 
in t e r m  of the curvature of y at that point: 

Again, the i?ame variation formulae of [30] are used to derive the Frgnet equations for y" 
and hence K * .  
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(vii) y*  is a planar-like soliton: by (v), we know that y* has torsion TO. The curvature 
function satisfies the equation 

” 
E*@*)  = z b f E f ( K ’ )  = 0 

i=O 

where E; denotes the Euler operator Ei, with differentiation with respect to s replaced by 
differentiation with respect to s* (= t = arclength along y* ) ;  bf = afQ2”.  where a: = an-i. 
y*  is therefore a planar-like soliton of the same order as y. with yipped‘ coeficients. The 
existence of a pseudospherical surface containing both y and y*  as asymptotic lines provides 
a geometric Backlund transformation for planar-like solitom. The proof requires use of the 
s-constants of motion of section 2, and the variation of curvature described in article (i). 

We have already seen the connection 
between cnrves of constant torsion, pseudospherical surfaces and the unit-length vector 
field W = cos(8)T - sin(8)N. Let A = cos(@), B = -sin@). Then A ,  B satisfy the 
differential equations dA/ds = K(s)B ,  dB/ds = -K(s)A. T* is also unit length: and 
T’ = F T  -k G N ,  where F .  G are polynomial expressions in K and its derivatives. One 
can check that along y ,  F ,  G satisfy the same differential equations as A and B do; and 
at s = -m, their respective values agree. This shows that along planar-like solitons, the 
‘trigonometric’ vector field can be expressed in terms of local quantities associated with the 
curve. 

(ix) The conjugate LIE hierarchy. By definition, the vector field T* can be expressed as 
a linear combination of the vector fields X,. One can think of T’ as (minus) the zeroth term 
in the conjugate LE hierarchy and ask whether the higher-order terms are also expressible 
in terms of the L E  hierarchy along y .  By the conjugate hierarchy we mean vector fields 
such as X; = K*B* = K * B ,  and so forth. 

It is actually more convenient to express the relation between the vector fields A; and 
A.; this is essentially equivalent information since along a constant torsion curve the A,, 
span the same space as the X,, Also, along planar-like solitons, we have C:biAzj+l  = 0, 
so we need only consider the span of A I ,  . . . , AZn (an analogous statement holds for y*). 

Proposition. i = 1, . . , , n can be 
expressed as  a linear combination of the vector fields Azi-1, i = 1,. . . , n,  and a similar 
statement holds for the Azi, i = 1,. . . , i t .  In particular 

(viii) T* and the ‘trigonometric equation’. 

Along a planar-like soliton y .  the n vector fields 

” 
A;~-, = C ( S - ’ H T ) ~ ~ A ~ ~ - ,  

j=l 

where S is the Toeplitz m a ~ x  

H is the Hankel matrix 
0 ... 0 1 
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and T is the Toeplitz matrix 

A similar transformation exists relating the A& and A y :  it is given by S-'KT, where K is 
the 'almost Hankel' matrix 

K = [ :  
0 1 0 ... 0 -b,-s/bo 

0 . . , . . . . . .  0 

This proposition is relevant to the discussion in section 5 .  
(x) Symmerry: For a pseudospherical surface M, we have been discussing an asymptotic 

curve y and its conjugate curve y". Of course, there is a symmetric relation between these 
two curves: y can be thought of as the conjugate curve for y*. The formulae we have been 
discussing reflect this. We mention three: 

0 -b,-i/bo 
-bn/bo 

Ks.  = K:. 

We also remark that the formulae from articles (vii) and (ix) both have an involutive nature 
which also reflects this symmetry. 

5. Evolution equations preserving pseudospherical surfaces 

5.1. Pseudosphericity-preserving deformations and f f ~  vectorfields 

In a recent paper, McLachlan and Segur [39] have investigated differential geometric 
aspects of the evolution of surfaces in R ~ .  In particular, they give examples of geometric 
evolution equations on surfaces which preserve the pseudosphericity property, which we 
call pseudosphericily-preserving evolution equations. We now describe how their examples 
fit quite nicely into the structure described in this paper. 

As we have seen, a pseudospherical surface M comes endowed with a foliation by curves 
of constant torsion (the asymptotic lines). Thus, a plausible candidate for a pseudosphericity 
preserving vector field would be an evolution equation defined along the asymptotic lines 
which preserves constant torsion. As is shown in 1391, such an evolution equation exists: 
given M = MO, let the asymptotic lines evolve according to the CTP equation yr = Zl (y ) .  
Then the resulting surfaces Mr are pseudospherical. 

At least for soliton pseudospherical surfaces, this can easily be extended to any evolution 
from the CTP hierarchy: 
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Proposition. Let M = MO be a soliton pseudospherical surface. Let the asymptotic lines 
evolve according to y, = 2 = E," ciZi. Then the resulting surface M, at any time f is 
pseudospherical. 

The proof uses the commutativity of the LIH evolution equations. Let y = y(s,  0) be 
an asymptotic curve for M ;  by definition, y is a planar-like soliton. The evolution y, = T",  
starting with y .  sweeps out M .  But along y ,  T' is just a linear combination of elements 
from LM. This is also true for Z. All the evolution equations from LM preserve critical 
points for the functionals associated with LM, including Z .  Using the CTP property of Z ,  the 
deformations of y under Z must all be planar-like solitons of the same type. Commutativity 
of the Z and T* evolution equations implies that any time f, y ( s ,  t )  is an asymptotic curve 
for the surface M I ,  which is therefore pseudospherical. 

5.2. Pseudo-sphericity preserving vector fields of mixed type 

In the previous section, the deformations of the pseudospherical surface M were defined in 
terms of the evolution of its asymptotic line foliation. One could also define an evolution 
in terms of the conjugate l i e  foliation, as well as evolutions which combine the two: 
yr = 2 + Z' = E," ciZi + E," cTZ;. In [39], McLachlan and Segur essentially ask if 
evolution equations of this type are integrable. Using (ix) from the previous section, we can 
answer in the affirmative, again assuming M is a soliton surface. The reasoning is simple: 
along such a surface, the Af, and therefore the Z;, can be expressed in terms of the Ai. In 
fact, one checks that the Z: are linear combinations of the Zi, hence the second summand 
is redundant. 
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